Sharp Support Recovery from Noisy Random Measurements by L1 minimization

نویسندگان

  • Charles Dossal
  • Marie-Line Chabanol
  • Gabriel Peyré
  • Mohamed-Jalal Fadili
چکیده

In this paper, we investigate the theoretical guarantees of penalized l1-minimization (also called Basis Pursuit Denoising or Lasso) in terms of sparsity pattern recovery (support and sign consistency) from noisy measurements with non-necessarily random noise, when the sensing operator belongs to the Gaussian ensemble (i.e. random design matrix with i.i.d. Gaussian entries). More precisely, we derive sharp non-asymptotic bounds on the sparsity level and (minimal) signal-to-noise ratio that ensure support identification for most signals and most Gaussian sensing matrices by solving the Lasso with an appropriately chosen regularization parameter. Our first purpose is to establish conditions allowing exact sparsity pattern recovery when the signal is strictly sparse. Then, these conditions are extended to cover the compressible or nearly sparse case. In these two results, the role of the minimal signal-to-noise ratio is crucial. Our third main result gets rid of this assumption in the strictly sparse case, but this time, the Lasso allows only partial recovery of the support. We also provide in this case a sharp l2-consistency result on the coefficient vector. The results of the present work have several distinctive features compared to previous ones. One of them is that the leading constants involved in all the bounds are sharp and explicit. This is illustrated by some numerical experiments where it is indeed shown that the sharp sparsity level threshold identified by our theoretical results below which sparsistency of the Lasso solution is guaranteed meets the one empirically observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Sensing over the Grassmann Manifold: a Unified Geometric Framework

l1 minimization is often used for finding the sparse solutions of an under-determined linear system. In this paper we focus on finding sharp performance bounds on recovering approximately sparse signals using l1 minimization, possibly under noisy measurements. While the restricted isometry property is powerful for the analysis of recovering approximately sparse signals with noisy measurements, ...

متن کامل

Recovery of signals under the condition on RIC and ROC via prior support information

In this paper, the sufficient condition in terms of the RIC and ROC for the stable and robust recovery of signals in both noiseless and noisy settings was established via weighted l1 minimization when there is partial prior information on support of signals. An improved performance guarantee has been derived. We can obtain a less restricted sufficient condition for signal reconstruction and a t...

متن کامل

Recovery of signals under the high order RIP condition via prior support information

In this paper we study the recovery conditions of weighted l1 minimization for signal reconstruction from incomplete linear measurements when partial prior support information is available. We obtain that a high order RIP condition can guarantee stable and robust recovery of signals in bounded l2 and Dantzig selector noise settings. Meanwhile, we not only prove that the sufficient recovery cond...

متن کامل

A Sharp Sufficient Condition for Sparsity Pattern Recovery

Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...

متن کامل

Compressed sensing signal recovery via forward-backward pursuit

Recovery of sparse signals from compressed measurements constitutes an l0 norm minimization problem, which is unpractical to solve. A number of sparse recovery approaches have appeared in the literature, including l1 minimization techniques, greedy pursuit algorithms, Bayesian methods and nonconvex optimization techniques among others. This manuscript introduces a novel two stage greedy approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1101.1577  شماره 

صفحات  -

تاریخ انتشار 2011